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Periodic Structures and Bloch Modes
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1-D Periodic Structures

A structure is periodic if its geometry and physical properties are invariant under a translation:

periodic microstrip
(3-D problem)

g x—->x+d
Z X Tay y-oy
Z—>Z

strip grating Translation along X

(2-D problem)

If we have invariance under a translation of p, we have it also under np, n integer

The minimal p is called the “period” of the structure.
The restriction of the structure to a period is the unit cell U
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2-D Periodic Structures

A structure is periodic if its geometry and physical properties are invariant under a translation:

x—=x+d,
deiz+dyy= y—-y+d,
Z—>Z

Translation along X and y

If we have invariance under a translation of p;, we have it also under np;, n integer

The minimal p; is called the “period” of the structure.
The restriction of the structure to a period is the unit cell U

Guido VALERIO — ESoA-SyMat course, Paris 2023 4



3-D Periodic Structures

A structure is periodic if its geometry and physical properties are invariant under a translation:

(xﬁx+dx

y-oy+d,
z->z+d,

A

Ta,%+d,y+dyz °

\

Translation along X, Y, Z

If we have invariance under a translation of p;, we have it also under np;, n integer

The minimal p; is called the “period” of the structure.
The restriction of the structure to a period is the unit cell U
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Periodic Structures and Eigenproblems

When a structure is invariant under an operator A, its modes are solutions of the eigenproblem
AlE(r)] =1 E(r)

where A is an operator acting on a field E, and A is a scalar factor (not depending on r).

A non-trivial solution E is an eigenvector of the problem, and A is an eigenvalue.

In periodic structure, A is a translation, and modes are called “Floquet-Bloch modes”
or Bloch modes. In 1-D periodicity:

Tiz[E(r)] = E(r+dx) =AE(r)

Bloch modes do not change after a period, apart from a multiplicative constant A

Guido VALERIO — ESoA-SyMat course, Paris 2023 6



Floquet-Bloch Modes

T;z:[E(r)] = E(r + dx) = AE(1)

Wecall A= e_jkxd = e_“xde_j'gxd

Attenuation constant
/
where k, — ja,

/\

Propagation constant

Phase constant

E(r + dx) = e Tk AE(r)=e~ %% =IBxd E (1)

Moving the observation point of a period, the field is
* phased of S d
* attenuated of ,d

Note: the field is not periodic!
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Floquet-Bloch Modes and Propagation

Let us define the function u(x,y,z) = e/**E(x,y,2)

How does the U function behaves if translated of a period?
ulx 4+ d,y,z) = e/xCHDE(x + d,y, z)=e/kxXeJkxdE (x + d,y, 2)=
= elka¥ oikxdo=JkxdE (x vy 7) = e/** E(x,v,2) = u(x,y, z)

So the U function is periodic, and E(x,y,z) = e /** u(x, y, z)

The field is a product of a periodic function (describing the field variation inside a unit cell)
and a propagation factor e Jkxx

The same can be done in 2-D and 3-D periodic structures...
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Bloch Modes and Spatial Harmonics

The periodic function u(x, y, z) is L2(U) (a finite energy is associated to the field inside
a unit cell U) and can be written as a Fourier series

+ 00 400

E — o Jkxx — pJkxx _ja%nx = _j(kx+27an)x
(x,y,Z) e u(xiyrz) e Cn(y;z)e Cn(y;z)e

n=—0oo n=-—0oo

Each term of the series is a spatial harmonic: a plane wave propagating with a wavenumber

21N 2ntn
kx,n = kx"'T: ﬁx"'T_]ax
2mn

* The phase constant of the nth harmonicis S, + —

* The attenuation constant «,, is the same for all the harmonics.

The weights ¢, (y, z) of each harmonic depend on the cell configuration.
In general, all the harmonics are present and they cannot be excited separately.
The only field which can be excited is the entire Bloch mode.

This harmonic sum can be easily generalized in 2-D or 3-D periodic structures.
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Spatial Harmonics in 2-D Geometries

+ 00

] 21N
E(x,y,z) = Z cn(y,2)e”’ (k=g )

n=—oo

In free space (homogeneous and isotropic medium), each Cartesian component of E
must satisfy the Helmholtz equation V?E + k?E =0

2
This means that, e.g. in a strip grating, k,, = \/kz — (kx + Zan) ,
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Spatial Harmonics in 3-D Geometries

+ 00

] 21N
E(x,y,z) = Z cn(y,2)e”’ (k=g )

n=—oo

If the 1-D periodic line has a dependence on three variable (microstrip line), an integral
over a continuous wavenumber must be added.

+ 00 T
1 (4 2T i 2k (2T,
E(x,y,Z) =ﬁ 2 e ](kx+ q )x j Cn(kz)e ]\/kz k% (kx+ q )ye_]kZdeZ
n=—oo _oo

The k, integral can be interpreted as the Fourier transform of ¢,,(y, z) with respect to z

2
. _jkz_kz_(k ﬁﬂ)
yn — z X d
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Formulation of Periodic Problems and Dispersive Equations
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Formulating a Periodic Problem

How to formulate a dispersive periodic problem?
Dispersive problem: no sources are present (we look for Bloch modes).

Remember: in a scattering problem (with sources having the same periodicity
of the structure) a set of these Bloch modes will be excited.

Let our structure be composed of a 1-D periodic pattern of metallic elements.
We need to enforce boundary conditions on each element to determine the solution.

y <o / E®(r) =0, r on each metallic element
VA ‘v\dA 1 Floquet periodicity

¢ <o E®"(r) =0, 7 onthen =0 metallicelement
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Formulating a Periodic Problem: the Equivalence Theorem

¢

/

<o Zor 7 Equivalent current J
y /
d y i
™~ Z d
ZA ‘. ZA Z ™

\

\
b

Equivalent currents on each element can be regarded as sources of the Bloch mode.
They replace the metallic elements (equivalence theorem) and radiate E in free space.

The Bloch mode can therefore be expressed with a Green’s function formalism.

E(r) = j 67 @) - J(r)dr

all elements \

Free-space electric-field/electric-source
Green’s function
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Formulating a Periodic Problem inside a Unit Cell

= Equwalent current J
= / /
< Em= [ emrie) o
A o™ all elements
%///
Z Convolution integral

The Bloch mode (and then the current /) is Floquet-periodic:

+00
J(r) = z e Ikl (r — nd%) Jo being the current on one unit cell

n=-—oo
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Formulating a Periodic Problem inside a Unit Cell

This simplifies the convolution integral:

+ 00
E(r) = f Gr,r;w)- 2 e Ikxd] (' — ndx) dr’
all elements n=-oo
+ 00
= Z e ~Jmkxd j G(r—ndx,r;w)- Jo(r)dr =
n=-oo element o

+00
= j Z e G(r — ndx, v’ w) - Jo(rNdr’ = j GP(r, v’ w, k) - Jo(rdr'
elem. o "= elem. o

where GP (1,7, k,)=)+12 o e /™ G(r — ndx, ")
is a periodic Green’s function, keeping all the information about periodicity.

The boundary conditions can be therefore enforced on a single unit cell.
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Periodic Green’s Function and Integral Equations

The boundary conditions is formulated as an integral equation in the unknown /:

GP(r, v, w, k) - J(r"dr' =0 rinelement0

elemento
tan

This is called an Electric-Field Integral equation (EFIE).

Other kinds of Integral equations can be formulated according to the kind of
boundary condition to enforce, type of objects, etc.

In a periodic problem the analysis can be restricted to a single unit cell by
» using a periodic Green’s function (in a MoM formulation),
» enforcing explicitly the Floquet-conditions on opposite sides of a unit cell (FEM, FDTD).

The second approach is used by commercial software like CST Microwave Studio, Ansys HFSS...
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Discretization and Dispersion Equation

GP(r,r',w, k) - J(r")dr' =0 rinelement0

elemento
tan

A numerical solution is found with the Method of Moments, MoM (implemented e.g. in FEKO).
The MoM converts the integral equation into a linear algebraic system:

M(w, k) - I1=0

The dispersive problem is solved by looking for non-trivial solutions /

They exist only if the determinant of the M matrix is zero:

det[M(w, kx)] =0 “Dispersion equation” of the structure

It is solved for each frequency ® and gives the relation k, = k, () of the periodic structure.

Note that commercial software can solve the problem for each 3 and find the function w=w(f3,).
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The Brillouin Diagram and Propagation Regimes
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The Brillouin Diagram in 1-D

det[M(w, k)] =0 ==k, = k(o)

We can visualize this dispersive equation with the help of the “Brillouin diagram”.
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I

8or
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sof o\\'\%@//
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//
0 1 1 1 1 1 1 1 1 1 - 1 1 1
0 01 02 03 04 05 06 07 08 09 1 0 05 1 1.5
Bd/n a/ko

We show only the section 0 < 3d < 7 since the diagram is
periodic of 21 (the Bd of the spatial harmonics differ of 27)
symmetric f§ = —f due to reciprocity

The same visualization is used in solid-state physics (energy bands vs. reciprocal lattice).
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The “Complete” Brillouin Diagram in 1-D

l harmonic coupling

_
backward / /
harmonlcs //

\\%\‘“
\\\ :Z | \V\\\&/
~_ 10 jﬁ}
~. el

B dz/ ™

forward harmonics

e Brilouin diagram gives no information on the excitation of the harmonics!
e If the diagram is plotted with a doubled period, one harmonics every two is absent.

e And what if the structure is uniform?
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Bound Regimes

A slow wave (§ > k) has an imaginary k,, = \/k? — 2
The wave attenuates far from the structure.

A slow wave is a bound wave.
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Radiating or Leaky Regimes

A fast wave (f <K) has k,, = \/k? — f2 with a real part different from zero.

The wave propagates far from the structure.

A fast wave in an open structure is a radiating wave (or leaky wave).
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Propagating (or Real) Regimes 1/2

In a lossless structure, frequency bands where the attenuation constanta = 0
allow for the propagation of waves without any attenuation.

M
M
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50 -
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If losses are present, an attenuation appears also in propagating regimes.
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Propagating (or Real) Regimes 2/2

8or

Tor

eor

0 0.5 1 15

a/kg

Phase velocity v,=w/B can be visualized through the angle y: every harmonic has its v,
Group velocity v, =dw/dp can be visualized through the angle ¢: all harmonics share the same V,

A lack of frequency dispersion (constant v, = V) corresponds to a straight line,
i.e. a linear phase constant.
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Attenuated (or Complex) Regimes

In a lossless structure, there are frequency bands where the phase constant is
fixed with frequency and the attenuation constant a varies.
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These are complex modes which do not carry real power: they are attenuating regimes.

In commercial software, stopbands appear as gaps between propagating regimes.
However, the calculation of o can be useful to evaluate the attenuation across the structure.
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The Closed Stop Band

The stop-band usually present at B=n/d is also called “closed stop band”:
A TEM mode lightly perturbed by periodic loads has its closed stop band in the bound region.

This frequency region is often considered as a “gap” between passbands.
It is used for its attenuation features as an electromagnetic band-gap (EBG) material.
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The Open Stop Band

The stop-band usually present at f=0is also called “open stop band”, because it lies in
the radiating region when the structure is open.
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At the same frequency #=0 and «a = 0. This phenomenon is responsible for a degradation
of the radiation in broadside direction of a leaky wave antenna.
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The Brillouin Diagram in 2-D 1/3

In 2-D periodic structures, the dispersive equation is of the kind
w = a)(kx, ky)

The 2-D Brillouin diagram can be visualized by fixing k,, at different values
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The Brillouin Diagram in 2-D 2/3

Putting all these slices on the same diagram:
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For rectangular lattices, the “slices” follow the boundary of an
“irreducible Brillouin zone”: the first Brillouin zone reduced by
all of the symmetries in the point group of the lattice.
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The Brillouin Diagram in 2-D 3/3

W
12
1 4
The relation w = a)(kx, ky) , if restricted 08 /ﬁ;”"
to real wavenumbers, can also define surfaces Zj
in the three-dimensional space (a), By, ,By).

Iso-frequency curves show values (ﬂx, ,By)
corresponding to a same frequency w .
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Anisotropy and Spatial Dispersion

Iso-frequency curves are useful to determine if the periodic structure is equivalent to a
material which is:

isotropic (circles) anisotropic (ellipses) spatially dispersive
60
50
40

30

Frequency (GHz)
kypy/m

Freauency (GHz)

Frequency (GHz)

20

10

-1 -0.56 0 0.5 1
keyps /T
_ P2 2
w?* = afs + apy w? = api + bp;

0. Quevedo-Teruel, Q. Chen, F. Mesa, N. J. G. Fonseca and G. Valerio, "On the Benefits of Glide Symmetries for Microwave Devices,"
in IEEE Journal of Microwaves, vol. 1, no. 1, pp. 457-469, winter 2021.
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 Definition of periodic structures in electromagnetics
 Eigenproblems and Bloch modes

O Formulation of a periodic problem: the periodic Green’s function
 Solution of a periodic problem: the dispersion equation

 The Brillouin diagram in 1-D: bound and radiating modes, propagating and
attenuating modes, closed and open stop band

O The Brillouin diagram in 2-D: the irreducible Brillouin zone, dispersion
surfaces, and iso-frequency curves
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